Plasma membrane rafts and chaperones in cytokine/STAT signaling.

نویسنده

  • Pravin B Sehgal
چکیده

We and others have recently obtained data suggesting that cytokine-STAT signaling in many different cell-types is a chaperoned pathway initiated at the level of specialized plasma membrane microdomains called "rafts" (the "raft-STAT signaling hypothesis"). These findings are of broad significance in that all cytokines and growth factors initiate signaling in target cells by interacting with respective cell-surface receptors. The new data suggest that raft microdomains represent the units of function at the cell-surface through which ligand-stimulated STAT signaling is initiated. Moreover, recent evidence shows the involvement of chaperone proteins in regulating the STAT signaling pathway. These chaperones include the human homolog of the tumorous imaginal disc 1 protein (hTid1) which associates with Janus kinase 2 (JAK2) at the level of the plasma membrane, heat shock protein 90 (HSP90) which associates with STAT3 and STAT1 proteins in caveolin-1-containing raft and cytoplasmic complexes, and glucose regulated protein 58 (GRP58/ER-60/ERp57), a thiol dependent protein-disulfide isomerase, found in association with STAT3 "statosome" complexes in the cytosol and in the raft fraction. We suggest a function of the HSP90 chaperone system in preserving IL-6/STAT3 signaling in liver cells in the context of fever. The identification and function of protein partners associated with specific STAT species in rafts and in cytosolic complexes, and in the efficient departure of cytokine-activated STATs from the cytosolic face of rafts towards the cell nucleus are now areas of active investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Docosahexaenoic Acid Changes Lipid Composition and IL-2 Receptor Signaling in Membrane Rafts Running Title: DHA changes Rafts

Polyunsaturated fatty acids (PUFAs) including docosahexaenoic acid (DHA; 22:6 n-3) modulate immune responses and exert beneficial immunosuppressive effects, but the molecular mechanisms inhibiting T cell activation are not yet elucidated. Lipid rafts have been shown to play an important role in the compartmentalization and modulation of cell signaling. We investigate the role of DHA in modulati...

متن کامل

Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts.

Polyunsaturated fatty acids, including docosahexaenoic acid (DHA, 22:6n-3), modulate immune responses and exert beneficial immunosuppressive effects, but the molecular mechanisms inhibiting T-cell activation are not yet elucidated. Lipid rafts have been shown to play an important role in the compartmentalization and modulation of cell signaling. We investigated the role of DHA in modulating the...

متن کامل

The Jak-Stat Signaling Pathway of Interferons System: Snapshots

Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...

متن کامل

Inhibition of cytokine signaling in human retinal endothelial cells through modification of caveolae/lipid rafts by docosahexaenoic acid.

PURPOSE Docosahexaenoic acid (DHA(22:6,n3)) is the principal n3 polyunsaturated fatty acid (PUFA) in the retina. The authors previously demonstrated that DHA(22:6,n3) inhibited cytokine-induced adhesion molecule expression in primary human retinal vascular endothelial (hRVE) cells, the target tissue affected by diabetic retinopathy. Despite the importance of vascular inflammation in diabetic re...

متن کامل

Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane

The plasma membrane is organized into various subdomains of clustered macromolecules. Such domains include adhesive structures (cellular synapses, substrate adhesions, and cell-cell junctions) and membrane invaginations (clathrin-coated pits and caveolae), as well as less well-defined domains such as lipid rafts and lectin-glycoprotein lattices. Domains are organized by specialized scaffold pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 50 3  شماره 

صفحات  -

تاریخ انتشار 2003